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Abstract In this paper the parameter optimization ILC
algorithm is used for trajectory tracking of the robot arm.
This control scheme is based on the parameter optimization
through a quadratic performance index which its solution
will converge in norm to zero. The control design is very
simple in the sense that the only requirement is to reduce the
error of the movement of the robot arm for picking up the
object at the desired target. Forward and Inverse kinematics
analysis are applied to find the joint angles at the desired
position and it will be compared with the current position to
obtain the error value. The ILC algorithm will finally be used
to correct the error trial to trial until the position of the robot
arm is completely closed to the target.

Keywords Parameter Optimization, Iterative Learning
Control

1. Introduction

Iterative learning control (ILC) is concerned with
trajectory tracking-control problem, where the required
trajectory is repeated over a finite duration known as the trial
or iteration length. This applies to many industrial
applications such as robotics, automated manufacturing
plants and food processing, for example [1]. The principle
behind ILC is to suitably use information from previous
trials, often in combination with appropriate current trial
information, to select the current trial input to sequentially
improve performance from trial to trial [2]. ILC was initially
defined by Arimoto e al. [3]. Since then, there has been
significant development of ILC algorithms which now
include principles and theory from a wide range of automatic
control disciplines. One such algorithm is parameter optimal
ILC [4] which was introduced using a simplified form of
lower dimensional optimization. In the cost function used,
the parameter is selected optimally to ensure that the
algorithm results in the monotonic convergence. One
possible improvement is to select the parameter by making it
iteration varying. The parameter optimal ILC guarantees

monotonics reductions in mean-square tracking error and
also has advantage of potentially being much simpler than
NOILC [5] in terms of implementation.

In this paper POILC is implemented on a robot arm for
pick and place task. The position of the object will be known
by obtaining the location from image processing operation
which the centroid is identified. After that it will be sent to
the robot arm’s controller to control the direction of the robot
arm to reach the desired target. However, approaching to the
position of the target is not accurate. There are sometimes
errors because the robot arm is operated at the same level of
tracking error. Therefore the POILC algorithm is chosen to
solve this problem in which the tracking error is corrected
every trials of the operation. The robot arm is finally able to
reach the target precisely.

The outline of the rest of the paper is as follows: the
parameter-optimal ILC problem and matrix representation
for dynamic systems are reviewed in section 2. The image
processing is roughly described in section 3. The robot arm’s
structure and also its kinematics are shown in section 4. The
operations of the robot arm are presented in section 5. The
experimental results are presented in section 6 then the
conclusions are given in the last section.

2. Parameter Optimal ILC

The starting point of the POILC algorithm is to consider
the system in the discrete model state-space form, which the
states, inputs and outputs are assumed to be sampled at
intervals A over a time interval [0,7] and the number of
samples N = T/h is known. That discrete model can be
written in the form

x(t+1) = Ax(t) + Bu(t)}
() = Cx(1)

where 4, B and C are constant real nxn, nx/ and mxn

matrices respectively. It is useful in the analysis to replace

the linear plant (1) by a matrix model relating a vector of

inputs to a vector of outputs for each trial. Therefore, the
plant (1) is described equivalently as
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y=Gu+d (2)

where G is the lifted plant model consisting of the Markov
parameters of the plant (1)

CB 0 0 - 0
CAB CB 0
G= CAB

CA'E CB - 0 (3)

|CA"™'B CA'"™B CA'B CB |

The input « and the output y are ‘super-vector’ which the
elements are the inputs and the outputs at time interval for
each trial shown as follows

uy, = (. (0),u, (1),..,u, (N —m))
yk =(y]¢(m)9yk(m+[)’"'=yk (N)) (4)
r=r(m),r(m+1),..,r(N))

The index k& denotes the iteration number. For simplicity, it
is assumed that m = 1. Furthermore, the tracking error at
iteration k is defined as e, = » — Guy —d = (r — d ) — Gu; and
hence, without loss of generality, it is possible to replace by
r — d and therefore to assume that 4 = 0 in what follows.
Equivalently, it is possible to assume that x, = 0.

The following feedforward control law

u (O =u, (O + By e +1) (5)

is chosen significantly for further investigation in the POILC
scheme [6], where f,,, is a scalar gain parameter. The
important thing to observe here is that the parameter /3., is to
be varied from each trial. In order to calculate the control
input on the (k& + 1)th iteration based on (5), at the end of kth
iteration S, is selected to be the solution of the quadratic
optimization problem

By =arg rr?ki?{‘]hl (Bist) i €4 =1 = Vp1s Vit = Gt}
(6)
where a suitable performance index J(f;.,) is defined as
2 2
i Byan) = ”"3k+1 " +wh @)

where w > 0 is a weighting parameter introduced to limit the
value of fi. Using e = r— Gu the tracking error update relation
has the form

st = = By Oley,

The stationary condition dJ/d ., = 0, a necessary and
sufficient condition, gives the optimal f;., as

Yk >0 (8)
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This algorithm is the feed-forward type and it has
guaranteed monotonic convergence to zero if the original

system satisfies a positivity condition. Moreover, because of
its computational simplicity, it is potentially straightforward
to implement in real-time application.

3. Image Processing

video

capture

image centroid

Figure 1. The position of the object by using the image processing

Figure 2. The robot arm structure

The image processing method is one of the important
operations to find the position of the object. The object will
be identified where it is by using the camera attached at the
grip of the robot arm. The photo of the object taken by the
camera is brought to image processing operation to separate
the object from the background. The image acquisition is
used to bring the image feature out from the image plane by
considering the color of the object.

To classify the shape of the object, the image is improved
by making it blurred in order to reduce the details. The image
will then be transferred from RGB pattern to Gray scale and
finally to be binary pattern. The condition to identify the
shape is the circularity value. For identifying the position of
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the object, after the object is separated from the background,
the centroid command will be applied. The position of the
object is then obtained in term of coordinate x and y which
can be shown in Figl

4. The Robot Arm Structure and its
Kinematics

The robot arm structure is designed to pick and place the
low weight object at the desired position. It consists of 4
links connected by 4 revolute joints and the grip at the end of
the robot arm. Every joint can be moved freely and their
movement is independent. The dc-motors with encoder are
used to drive the 4 joints and the grip which are controlled by
microcontroller via RS-232 port. Its real structure is shown
in Fig.2.

4.1. Forward Kinematics

The joint relation can be described in the matrix form
which the movement behaviour of the robot arm is
completely described in term of the joint offset, the joint
angle, the link length and the twist angle parameters. These
four parameters are known as the Denavit and Hartenberg
(DH) parameters [7]. The coordinate frames to define the DH
parameters are shown in Fig.3 and also the DH parameters of
this robot arm can be tabulated in table 1.
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Figure 3. Defining the coordinate frames on the robot arm

Table 1. Denavit — Hartenberg parameters.
link (i) a;.; (degree) a;.; (cm) d; (cm) 6, (degree)
I 0 0 12.5 &
2 -90 0 0 [
3 0 23 0 &,
4 0 23 0 04

With the DH parameters evaluated in Table 1 and the
calculation using forward kinematics analysis, the forward
kinematics relation of the position of the manipulator of the
robot arm given by 4x4 matrix can be obtained as

cBcly, —cOsby,, —s8  23ch[chy; +cb,) (10)
T0 = sOct,,, —s0,s6,,, b, 2356)[c,; +cB,]
Y] =50y, —COyy 0 —23[sOy+56,]+12.5
0 0 0 1

where 034 is shorthand for 6, + 8; + 6, and 0,5 for 6; + 65. For
locating the object position, the forward kinematics
calculation is applied by identifying the joint angle into
equation (10).

4.2. Inverse Kinematics

One approach to the inverse kinematics problem is to find
the solution using algebra or geometry [8]. In this case, the
joint angles are calculated using the algebraic solution
technique which @, 6, 6;, 6, are in the form of the
coordinate of the position x, y and z. If the position of the
object in the coordinate frame are given and defined to be py,
pyand p.on the x, y and z axis respectively, after using the
algebraic calculation, the joint angles can be computed as in
the following equations.

6, = Atan2(p,, p,)—180° (12)

B < gin] (23¢8; +23)(12.5- p.)-23s6;(cO p, -s6,p,) (13)
* (cﬂ,px—s(?,p_},)l+(]2.5—p:)2

L PEHpE4pt=25p.~90175

&5 = cos (14)
1058
—COSOy — S5Oy —COIy] )

where Iz = -C6,5054, Iy = '56156334 and I32= -C€334.

5. The Robot Arm Operation

For understanding more clearly, the operation of the robot
arm can be easily illustrated in the following diagram.
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Figure 4. Block diagram of the robot arm operation

It can be seen in the block diagram shown in Fig.4 that the
robot arm is controlled by applying the ILC algorithm which
the position of the joint angles of the robot arm are adjusted
every trials of the operation. The current position of the joint
angles of the robot arm will be the previous data used to
calculate the input of the next iteration. The desired input is
the position of the object which is obtained from the camera
via the image processing The object posntlon is in the
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Cartesian coordinate which will be transformed into the
relative joint angles from inverse kinematics analysis. The
difference of the current and the desired joint angles is used
to improve the position of the robot arm to finally reach the
object.

6. Experiment Results
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Figure 5. The norm of error of the joint angle @), &, 65, 0, in 10 iterations
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Figure 6. The convergence for iteration k = 100

For the experiment, the object is selected to be a

light-weight cube which its size is 6x6x6 centimeters. The
object is placed somewhere in front of the robot arm within
the range of the camera’s picture frame. The joints and links
of the robot arm are firstly set at the initial position which all
joints angles are assumed to be at 0°. Therefore, there will be
the error distance between the object and the robot arm. The
iteration number is chosen to be 15, 20, 50 and 100 in order
to see the benefit of the iteration to the convergence. The
weighting parameter for the ILC algorithm is chosen as 10
The results are given in Fig.5 and Fig.6.

Fig.5 shows the behavior of the error in norm over 10
iterations. The error is the difference between the joint angles
of the robot arm at the object position and at the current
position of the robot arm. The graph indicates that the error
in norm of the joint angle &), &, 65, 6, highly decreases in the
first iteration. After the first iteration the errors gradually
decreases in a small value as they reduce approximately by
86.13, 79.07, 67.47, and 87.45 percent respectively in the
tenth iteration. The effect of the number of the iteration to the
convergence is shown in Fig.6. It is seen that increasing the
iteration number results in improved the convergence rates.
After a hundred iteration the choice of 6, reduces error norm
by 94.96 percent. This also means that the robot arm can
reach the object position more precisely.

7. Conclusions

In this paper, the use of parameter optimal iterative
learning control to control the robot arm is presented. It is
illustrated an observation that applying the iterative learning
control with the optimization is an alternative way to
successfully achieve a perfect tracking. The experimental
results show that the robot arm can move progressively
toward the desired target in a few iterations. The error
measured from the difference between the current position of
the joint angles and the target position becomes smaller
every increasing the iteration. The error also decreases in the
acceptable range which is within 5%. This paper suggests
that the use of parameter optimal ILC algorithm does have
benefits in the real work. However the additional work is
needed to improve for the huge task.
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